Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 628(8007): 442-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538798

RESUMO

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Assuntos
Complexos Multiproteicos , Mutação , Neoplasias , Proteína SMARCB1 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/genética , Neoplasias/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitina/metabolismo
3.
Eur J Med Chem ; 258: 115567, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390512

RESUMO

Molecular glues, functioning via inducing degradation of the target protein while having similar molecular weight as traditional small molecule drugs, are emerging as a promising modality for the development of therapeutic agents. However, the development of molecular glues is limited by the lack of general principles and systematic methods. Not surprisingly, most molecular glues have been identified serendipitously or through phenotypic screening of large libraries. However, the preparation of large and diverse molecular glue libraries is not an easy task and requires extensive resources. We previously developed platforms for rapid synthesis of proteolysis targeting chimeras (PROTACs) that can be used directly for biological screening with minimal resources. Herein, we report a platform of rapid synthesis of molecular glues (Rapid-Glue) via a micromolar scale coupling reaction between hydrazide motif on the E3 ligase ligands and commercially available aldehydes with diverse structures. A pilot library of 1520 compounds is generated under miniaturized conditions in a high throughput manner without any further manipulation including purification after the synthesis. Through this platform, we identified two highly selective GSPT1 molecular glues through direct screening in cell-based assays. Three additional analogues were prepared from readily available starting materials by replacing the hydrolytic labile acylhydrazone linker with a more stable amide linker based on the two hits. All three analogues showed significant GSPT1 degradation activity and two of them possess comparable activity to the corresponding hit. The feasibility of our strategy is thus verified. Further studies by increasing the diversity and size of the library followed by appropriate assays will likely yield distinct molecular glues targeting novel neo-substrates.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...